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ABSTRACT

The interferon-induced enzymes 20-50-oligoadeny-
late synthetase (OAS) and RNase L are key compo-
nents of innate immunity involved in sensory and
effector functions following viral infections. Upon
binding target RNA, OAS is activated to produce
20-50-linked oligoadenylates (2-5A) that activate
RNase L, which then cleaves single-stranded self
and non-self RNA. Modified nucleosides that are
present in cellular transcripts have been shown to
suppress activation of several RNA sensors. Here, we
demonstrate that in vitro transcribed, unmodified RNA
activates OAS, induces RNase L-mediated ribosomal
RNA (rRNA) cleavage and is rapidly cleaved by
RNase L. In contrast, RNA containing modified nu-
cleosides activates OAS less efficiently and induces
limited rRNA cleavage. Nucleoside modifications
also make RNA resistant to cleavage by RNase L.
Examining translation in RNase L�/� cells and mice
confirmed that RNase L activity reduces translation
of unmodified mRNA, which is not observed with
modified mRNA. Additionally, mRNA containing the
nucleoside modification pseudouridine is translated
longer and has an extended half-life. The observa-
tion that modified nucleosides in RNA reduce 2-5A
pathway activation joins OAS and RNase L to the list
of RNA sensors and effectors whose functions are
limited when RNA is modified, confirming the role of
nucleoside modifications in suppressing immune
recognition of RNA.

INTRODUCTION

The antiviral 2-5A system is initiated when double-
stranded (ds)RNA is bound by 20-50-oligoadenylate
synthetases (OAS). There are four OAS genes in
humans, OAS1, OAS2, OAS3 and OASL, encoding 8–10
isoforms due to alternative splicing. Activated OAS (other
than enzymatically inactive OASL) uses ATP as substrate
to produce unique, short 20-50-linked oligomers called
2-5A [px5

0A(20p50A)n; x=1�3; n� 2] that activate the
latent endoribonuclease RNase L. Binding of 2-5A to
the N-terminal region of RNase L monomers causes
RNase L dimerization and activates the C-terminal
nuclease domain. Activated RNase L cleaves
single-stranded (ss)RNA preferentially after UU and UA
dinucleotide motifs. [For a recent review of the 2-5A
system, see ref. (1).]
Although nucleoside modifications are common in RNA,

how this influences 2-5A system activity is unknown. RNA
contains more than 100 different modified nucleosides.
Nucleoside modifications are produced naturally during
RNA maturation and are introduced post-trans-
criptionally in a site-specific manner. Pseudouridine (�)
is the most prevalent modified nucleoside found in RNA
(2,3). One function of � at specific locations in tRNA and
ribosomal RNA (rRNA) is to stabilize crucial secondary
structure (4). However, no physiologic role has been
identified for the majority of RNA modification sites,
and the effect of nucleoside modifications on most
RNA-binding proteins has not been established.
In vitro transcribed RNA containing modified nucleo-

sides has been shown to be less stimulatory to several host
defense RNA sensors, including protein kinase R (PKR),
toll-like receptor (TLR)3, TLR7, TLR8 and retinoic acid-
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inducible gene I (RIG-I) (5–8). We previously reported the
production of in vitro transcribed mRNA in which every
uridine is replaced by pseudouridine (�-mRNA) and
found that protein expression from �-mRNA is higher
than from unmodified in vitro transcribed mRNA (9),
and this enhanced translation is due in part to reduced
activation of PKR by �-mRNA (6).
Here, we report that the presence of modified nucleo-

sides in RNA has two effects on the 2-5A pathway.
Certain unmodified in vitro transcribed mRNAs activate
OAS, resulting in rRNA cleavage and reduced translation.
Additionally, unmodified RNA is more rapidly cleaved by
activated RNase L. In contrast, RNAs containing certain
modified nucleosides fail to activate OAS and are resistant
to cleavage by RNase L. Modified RNA is therefore
identified as a distinguishing pattern for 2-5A system
activity.

MATERIALS AND METHODS

Cells and reagents

Human embryonic kidney (HEK) 293T cells were obtained
from the American Type Culture Collection and were
cultured in DMEM supplemented with 2mM L-glutamine
(Life Technologies), 100 U/ml penicillin, 100mg/ml strepto-
mycin (Invitrogen) and 10% fetal calf serum (HyClone).
Immortalized wild-type (WT) and RNase L�/� mouse em-
bryonic fibroblasts (MEFs) were maintained in RPMI
medium supplemented with 2mM L-glutamine, 100U/ml
penicillin, 100 mg/ml streptomycin and 10% fetal calf
serum. Oligo RNAs C11U2C7 and C11�2C7 were custom
synthesized (Dharmacon) and were 50-end-labeled using
[g-32P]ATP (PerkinElmer) and T4 polynucleotide kinase
(New England Biolabs). Polyinosinic:polycytidylic acid
[poly(I:C)] was purchased from Sigma.

mRNA synthesis and purification

RNAs were transcribed as previously described (7), using
linearized plasmids encoding firefly luciferase (pT7TS-
fLuc) or Renilla luciferase (pT7TS-Ren) and T7 RNA
polymerase (Megascript, Ambion). Capped mRNA was
generated by performing transcription in the presence of
cap analog 30-O-Me-m7G(50)ppp(50)G (New England
Biolabs). Metabolically labeled mRNA was generated by
performing transcription in the presence of [a-32P]CTP
(PerkinElmer). All mRNAs were transcribed to contain
30 nt-long 30-poly(A) tails. RNA containing modified nu-
cleosides was generated by substituting a modified nucleo-
side triphosphate [NTP derivatives of �, m6A and s2U
(TriLink)] for its cognate unmodified NTP in transcription
reactions, as described previously (7,9). Following tran-
scription, the template plasmids were digested with
Turbo DNase and RNAs were precipitated with 2.5M
lithium chloride at �20�C for 4 h. RNAs were pelleted
by centrifugation, washed with 75% ethanol and then
reconstituted in nuclease-free water. The concentration
of RNA was determined by measuring the optical density
at 260 nm. All RNA samples were analyzed by agarose gel
electrophoresis for quality assurance. RNA was high per-
formance liquid chromatography (HPLC) purified on an

RNASep cartridge (Transgenomic). Lack of double-
stranded contaminants in the purified RNA samples was
confirmed by RNA dot–blot performed with dsRNA-
specific mAb J2 (English & Scientific Consulting Bt.).

In vitro OAS activation and measurement of
functional 2-5A

Recombinant hexahistidine-tagged human OAS1 p42 was
a gift of Rune Hartmann (University of Aarhus,
Denmark) (10). Recombinant human RNase L and
p3[2

0p50A]2A (trimer 2-5A) were prepared as described
(11,12). Dual-labeled fluorescent probe 6-FAM-UUA
UCA AAU UCU UAU UUG CCC CAU UUU UUU
GGU UUA-BHQ-1 was custom synthesized by
Integrated DNA Technologies. In vitro OAS1 activation
was performed as described (13). Briefly, 20 mg/ml of
OAS1 was activated with 2.0 mg/ml RNA for the indicated
time in buffer consisting of 20mM HEPES pH 7.5, 20mM
Mg(OAc)2, 20mM KCl, 1mM EDTA and 10mM ATP.
Reactions were stopped by heating to 95�C for 3min. Rate
of functionally active 2-5A produced was measured using
a fluorescence resonance energy transfer (FRET) based
assay as described previously (14,15). Synthesized
p3[2

0p50A]2A (trimer 2-5A) (12) was purified using HPLC
and used for generating standard curves (13).

rRNA cleavage

One day prior to transfection, WT or RNase L�/� MEF
cells were seeded into 96-well plates at a density of
5.0� 104 cells/well and treated with 1000U/ml
interferon-aA/D (Sigma). Poly(I:C) or mRNAs were com-
plexed with lipofectin as described (7). Cells were exposed
to 50 ml DMEM containing lipofectin-complexed RNA
(2.5 mg) for 1 h, which was then replaced with complete me-
dium and further cultured. At 3 h post-transfection, total
RNA was recovered from cells using Trizol (Invitrogen).
RNA was separated by agarose gel electrophoresis,
stained with SybrGold reagent (Invitrogen) and detected
using UV fluorescence and a GelDoc 2000 imager
(Bio-Rad Laboratories).

In vitro RNA cleavage by RNase L

Recombinant human RNase L was prepared as described
(14). For oligo RNAs, 12.5 nM RNase L was activated on
ice with 100 nM trimer 2-5A for 30min in RNase L
cleavage buffer (25mM Tris–HCl pH 7.4, 100mM KCl,
10mM MgCl2, 50mM ATP and 7mM b-mercapto-
ethanol). Then 100 nM 50-end-labeled oligo RNA
[32P]pC11U2C7 or [

32P]pC11�2C7 was added and reactions
were incubated at 30�C. At the indicated times, reactions
were stopped by the addition of urea-TBE loading buffer
(Bio-Rad) and heating to 95�C for 3min. Aliquots were
separated by 15% polyacrylamide gel electrophoresis, gels
were dried, and samples were imaged using a phosphor
storage screen (Molecular Dynamics) and detected using
a Typhoon PhosphorImager (GE Healthcare). Cleavage
of mRNA was performed similarly, using 10 nM RNase
L, 10 nM trimer 2-5A and 100 nM of metabolically
32P-labeled firefly luciferase mRNA. Reactions were
stopped by heating to 95�C for 5min. The mRNA was
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recovered by phenol:chloroform extraction and detected
by northern blotting.

RNA stability in rabbit reticulocyte lysate

Equal mass (25 ng/ml) or equal molar (40mM) mRNAs-
encoding firefly and Renilla luciferases were incubated in
15 ml rabbit reticulocyte lysate (RRL) (Promega) at 30�C.
At the indicated times, a 2 ml aliquot was removed and the
RNA was recovered using Trizol for subsequent detection
by northern blotting.

RNA stability in cell culture

HEK293T, WT MEF or RNase L�/� MEF cells were
nucleofected with 5 mg mRNA using nucleofector program
T-020 and nucleofector V kit (Lonza). After 15min recov-
ery in RPMI, cells were plated in complete media and
incubated at 37�C. At the indicated time, RNA was re-
covered from cells using Trizol for subsequent detection
by northern blotting.

Northern blotting

RNA was isolated from RRL or cells using Trizol.
Samples were processed and analyzed on northern blots
as previously described (16). Probes were derived from
plasmids and were specific for the coding region of
firefly luciferase or Renilla luciferase.

Half-life calculation

After performing northern blots, images were scanned
from film and ImageJ (version 1.44 p) was used to measure
the density of the band corresponding to the full-length
mRNA. For each data point, the log10 was taken and the
values were plotted as a function of time. The slope of best
fit line (k) was used to calculate the mRNA half-life using
the equation t1/2=0.693/k (17).

Detection of reporter proteins in RNA-transfected cells

Cells were seeded into 96-well plates at a density of
2–5� 104 cells/well one day prior to transfection. Cells
were exposed to 50 ml DMEM containing lipofectin-
complexed RNA (0.25 mg) for 1 h, which was then replaced
with complete medium and further cultured. Cells were
lysed in 25 ml Firefly-, Renilla- or Dual-Luciferase-
specific lysis reagents (Promega). Aliquots of 2 ml were
assayed with the corresponding enzyme substrates
(Promega) and a LUMAT LB 950 luminometer
(Berthold) at a 10-s measuring time.

Translation of mRNA in mice

All mice were cared for according to institutional guide-
lines at the University of Pennsylvania under a protocol
approved by the Institutional Animal Care and Use
Committee. WT C57Bl/6 (NCI) and C57Bl/6 backcrossed
RNase L�/� mice at 9–16 weeks of age received tail vein
injections of 1 mg RNA complexed with lipofectin in 60 ml
DMEM. At the indicated time, mice were sacrificed and
spleens were isolated. Each spleen was bisected and spleen
fragments were homogenized in 200 ml cell culture lysis
reagent (Promega). Luciferase activity was detected in a

40 ml aliquot of lysed spleen using 200 ml luciferase assay
substrate (Promega) and a LUMAT LB 950 luminometer
at a 10-s measuring time.

Immunoprecipitation

HEK293T cells were seeded into 96-well plates at a density
of 5.0� 104 cells/well 1 day prior to transfection. Cells
were exposed to 50 ml DMEM containing lipofectin-
complexed RNA (0.25 mg) for 1 h, which was then replaced
with complete medium and further cultured. Cells were in-
cubated in methionine/cysteine-free medium (Invitrogen)
for 1 h, then pulsed with complete medium supplemented
with 35S-methionine/cysteine (140mCi/ml) (PerkinElmer)
for 3 h prior to lysis in 50 ml RIPA buffer supplemented
with protease inhibitor cocktail (Sigma). Renilla luciferase
was immunoprecipitated from lysates using an anti-
Renilla luciferase antibody (PM047, Medical & Biological
Laboratories) and protein G-coated Dynabeads
(Invitrogen) and separated by 15% polyacrylamide gel
electrophoresis. Gels containing the labeled samples were
treated with 1M sodium salicylate, dried and a fluorogram
was generated by exposure to BioMax MS film (Kodak).

Statistical analysis

All data are reported as mean±standard error of the
mean (SEM). Statistical differences between treatment
groups were calculated by the Student’s t-test using
Microsoft Excel. For all statistical testing, a P< 0.05
was considered significant.

RESULTS

RNA containing nucleoside modifications activates OAS
less than unmodified RNA

We first compared the activation of purified human OAS1
by unmodified RNA or RNA with identical sequence con-
taining the modified nucleosides �, N6-methyladenosine
(m6A) or 2-thiouridine (s2U). The amount of functionally
active 2-5A (trimer or higher) produced was quantified
using a FRET-based RNase L activation assay (12,13).
The unmodified RNA efficiently activated OAS1. In
contrast, RNA containing �, m6A or s2U were poor acti-
vators of OAS and did not induce production of function-
ally active 2-5A (Figure 1). Because � is the most
prevalent modified nucleoside (2,3) and has also been
shown to reduce the RNA activation of other RNA
sensors (5–8), subsequent experiments focused on the
comparison of unmodified RNA to �-containing RNA
with identical sequence.

Pseudouridine-containing RNA induces less rRNA
cleavage than unmodified RNA

OAS activation by unmodified RNA leads to activation of
RNase L, which mediates the effector function of the 2-5A
system by cleaving ssRNA. RNase L-mediated cleavage at
exposed loops of rRNAs in intact ribosomes results in
well-defined cleavage patterns in rRNA (18). Therefore,
the integrity of rRNA following RNA transfection was
examined. Lipofectin-complexed RNA was transfected
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to WT and RNase L�/� MEF cells, and total RNA was
subsequently recovered and examined by agarose gel elec-
trophoresis and UV imaging. Cells mock transfected with
no RNA were included as a negative control. In WT cells,
delivery of unmodified in vitro transcribed RNA induced
cleavage of rRNA, but significantly less rRNA was cleaved
when the transfected RNA contained �. Transfection
of the same set of RNAs into RNase L�/� MEF cells
did not generate the specific rRNA degradation profile
(Figure 2).

RNase L cleaves uridine-containing RNA more readily
than )-containing RNA

Activated RNase L cleaves preferentially after UpNp in
ssRNA. Therefore, to compare the ability of RNase L to
cleave �-containing RNA, purified recombinant human
RNase L was activated with trimer 2-5A and mixed with
50-[32P] end-labeled oligo RNA containing a single RNase
L cleavage site (C11U2C7 or C11�2C7). The oligo RNA
containing unmodified uridine was rapidly cleaved, while
there was no significant cleavage of the oligo RNA con-
taining � (Figure 3A and B). Full-length firefly luciferase
mRNA metabolically labeled with 32P was then analyzed
for cleavage by RNase L. Both unmodified and �-RNA
could be cleaved by RNase L. However, consistent with
the results obtained with oligo RNAs, �-containing RNA
was cleaved less efficiently by RNase L than unmodified
RNA (Figure 3C).

Nucleoside-modified RNA has an increased half-life

We next examined the stability of unmodified and
�-containing RNA by northern blot analysis. Both un-
modified and �-RNA were equally stable at room
temperature through experimental time courses and indef-
initely in storage at �20�C. Unmodified and �-RNAs
were added to RRL or transfected to HEK293T cells.

When transfecting cells using cationic lipids, a portion of
RNA complexed with transfection reagents persist as an
extracellular, nuclease-protected fraction. Therefore, for
these experiments, we used nucleofection to deliver
naked RNA and confirmed the rapid degradation of extra-
cellular RNA by serum nucleases in the culture media.
Total RNA was subsequently re-isolated and aliquots
were examined by northern blot to compare degradation
rates of the reporter RNAs. Two reporter RNAs, firefly
and Renilla luciferase, were studied simultaneously to
ensure that stability differences were not a result of differ-
ences in delivery conditions. �-modified RNAs had longer
half-lives than unmodified RNAs in RRL (Figure 4A).
Similarly, in HEK293T cells the half-life of �-modified
firefly luciferase RNA increased �2-fold to 6.1 h
compared to 3.2 h for unmodified RNA (Figure 4B).

Subsequently, the influence of RNase L on the stability
of unmodified and �-containing RNA was also compared
using RNase L�/� MEF cells. As in HEK293T cells, the

Figure 2. Induction of rRNA cleavage by in vitro transcribed RNA.
Unmodified (U) or �-containing RNA encoding firefly luciferase was
complexed to lipofectin and delivered to WT or RNase L�/� MEF
cells, as was a no RNA (�) control. At 3 h following transfection,
total RNA was recovered from cells. RNA aliquots were separated in
an agarose gel and visualized by UV fluorescence. Arrowheads indicate
RNase L-specific rRNA cleavage products. Bar graph above bands
shows densitometric measurement±SD of the ratio of cleavage
products to uncleaved 18S rRNA, normalized to cells not treated
with RNA. Representative data from one of three independent experi-
ments is shown.

Figure 1. OAS activation by RNA containing modified nucleosides.
Purified human OAS1 p42 was activated with RNAs containing
either unmodified (U) or the indicated nucleoside modifications and
the functionally active 2-5A produced was quantified using a
FRET-based assay as described in ‘Materials and Methods’ section.
Data shown are mean of three replicates.
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RNA was delivered by nucleofection. Total RNA was re-
covered from cell culture and firefly and Renilla luciferase
RNA were assessed by northern blot. In both WT and
RNase L�/� MEF cells, �-modified RNA half-life was
increased by 50% to 3.8 h compared to 2.5 h for unmodi-
fied RNA (Figure 4C).

Translational advantage of )-RNA is reduced in the
absence of RNase L

Considering that �-modification of RNA reduced activa-
tion of OAS1 and RNA induced rRNA degradation, and

Figure 4. Stability of �-containing RNA. Unmodified (U) or
�-containing RNAs encoding firefly or Renilla luciferases were mixed
1:1 and either added to RRL (A) or nucleofected to HEK293T cells
(B). At the indicated time points, RNA was recovered and detected by
northern blotting. Radiolabeled DNA probes corresponding to the
coding sequence of firefly and Renilla luciferases were mixed prior to
northern hybridization (A) or used separately to probe duplicate
northern blots from aliquots of the recovered RNA (B). Bar graphs
above the images show densitometric measurement of the uncleaved
firefly luciferase mRNA. Data shown is representative of at least five
independent experiments. (C) Unmodified (U) or �-containing in vitro
transcribed RNA encoding firefly luciferase was delivered to WT or
RNase L�/� MEF cells by nucleofection. Cells were lysed at 0.2, 1,
3, 6 or 24 h following transfection, total RNA was recovered, and
luciferase RNA was assessed by northern blotting. Radiolabeled
DNA corresponding to the firefly luciferase coding sequence was used
as probe. Bar graph above bands shows densitometric measurement of
the uncleaved RNA. Representative data is shown from one of three
independent experiments.

Figure 3. Cleavage of �-containing RNA by RNase L. Purified RNase
L was activated on ice by trimer 2-5A prior to mixing with RNA
substrates. (A) Cleavage of oligo RNAs [32P]pC11U2C7 (UU) or
[32P]pC11�2C7 (��) by RNase L. Reactions were stopped at the
indicated time by addition of loading buffer, and reactions were
separated by PAGE and visualized by phosphor-storage radiography.
Representative data from one of three independent experiments is
shown. (B) Quantification of band intensities. Values were normalized
to the values obtained in the 30min reaction not containing RNase L.
Data represents average±SEM of n=3 experiments. Asterisks
indicate P< 0.05. (C) Cleavage of metabolically [32P]-labeled unmodi-
fied (U) or �-containing firefly luciferase mRNA by RNase L.
Reactions were stopped at indicated times. Aliquots of isolated RNA
from each reaction were separated by PAGE and visualized by
phosphor-storage radiography. Representative data from one of three
independent experiments is shown.
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that RNA containing � was cleaved by RNase L less ef-
ficiently, we asked how the absence of RNase L influences
translation of unmodified and �-containing mRNA.
Thus, mRNAs encoding luciferase were transfected into
WT and RNase L�/� MEF cell lines and translation was
assessed by measuring luciferase activity. In WT cells,
more protein was translated from the �-containing
mRNA than from the unmodified mRNA. In the RNase
L�/� cell line, there was lower level translation of both
mRNAs and the translational advantage of �-mRNA
over unmodified mRNA was dramatically reduced
(Figure 5A).
A similar pattern of translation occurred in the spleens

of mice following injection of mRNA. Either WT C57Bl/6
or RNase L�/� mice were given lipofectin-complexed
luciferase mRNA by tail vein injection. Luciferase
activity was assessed in spleen lysate 4 h later. In WT
mice, �-containing mRNA was translated at higher
levels than unmodified mRNA. In RNase L�/� mice,
translation of �-containing mRNA reached the same
level as observed in WT mice, but translation of unmodi-
fied mRNA was increased relative to WT (P< 0.05),
(Figure 5B).

Translation of pseudouridine-containing mRNA continues
for a longer time than unmodified mRNA

Having seen that the presence of modified nucleosides in
mRNA increases its half-life and translation efficiency, we
compared the translation over time, to determine how
modified nucleosides influence the duration of translation.

RNA was complexed to lipofectin and delivered to cells
that were subsequently pulsed with 35S-methionine/cysteine
for 3h at 1, 21 and 45h post-transfection. Translation of the
mRNA was assessed by immunoprecipitating the encoded
Renilla luciferase protein and measuring 35S incorpor-
ation. There was a higher level of total translation of
�-containing mRNA at each time point (Figure 6A),
and ongoing translation of �-containing mRNA
continued after at least 48 h when detectable translation
of unmodified mRNA ceased (Figure 6B).

DISCUSSION

We investigated how the enzymes of the 2-5A system
interact with RNA and the role that modified nucleosides
play in altering activation and effector function. Our data
show that in vitro transcribed unmodified RNA activates
OAS1, but this activation is reduced when the RNA
contains modified nucleosides. OAS activation by un-
modified RNA leads to RNase L-mediated rRNA
cleavage, which is reduced by �-RNA. Furthermore,
RNase L cleaves unmodified RNA more efficiently than

Figure 6. Translation of �-containing mRNA in cell culture.
Unmodified (U) and �-containing mRNA were complexed to lipofectin
and delivered to HEK293T cells. (A) Renilla luciferase activity was
assessed in aliquots of cell lysate. Data displayed is mean±SEM
from four replicates, each performed in duplicate. (B) Cells were
pulsed for the last 3 h with 35S-methionine/cysteine prior to lysis at
the indicated time points. Renilla luciferase protein was immunopre-
cipitated from cell lysates, separated by PAGE and then visualized by
fluorography. Data shown is one of four replicates and is representative
of three independent experiments.

Figure 5. Translation of unmodified and �-containing mRNA in WT
and RNase L�/� cells and mice. Unmodified (U) or �-containing
in vitro transcribed mRNA encoding firefly luciferase was complexed
to lipofectin and delivered to WT and RNase L�/� MEF cells or mice.
Luciferase activity was measured in aliquots of cell or spleen lysate. (A)
MEF cells lysed 5 h following transfection. Values presented are
luciferase relative light units (RLU) in 2ml of the total 20 ml cell
lysate. Error bars indicate SEM of quadruplicate wells from one rep-
resentative of at least six independent experiments. (B)
Lipofectin-complexed mRNA was delivered by tail vein injection into
mice. Mice were sacrificed at 4 h post-transfection and their spleens
were homogenized in lysis buffer. Values presented are luciferase
RLU in 1/5 of the total 200ml spleen lysate. Error bars represent
SEM of n=3 mice.
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�-containing RNA. Experiments using RNase L�/�MEF
cells and RNase L�/�mice demonstrate that translation of
unmodified mRNA is decreased in the presence of the
intact 2-5A system, but that the translation level of
�-mRNA is largely independent of the 2-5A system. In
addition, the presence of � increases the half-life of in vitro
transcribed RNA in cells and lysates. Finally, we demon-
strate that �-containing mRNA is translated for a longer
duration than unmodified mRNA.

RNA sensing in the 2-5A pathway is performed by the
OAS family of proteins. Activation of OAS was originally
characterized as requiring >8 bp of uninterrupted helix in
>30-bp long dsRNA (19), but subsequently other struc-
tures with significant single-strandedness have been
proven to be potent OAS activators, including aptamers
(20), viral RNAs (21–24) and some cellular RNAs (13,25).
However, dsRNA generated from homopolymers contain-
ing 20-O-methylated nucleosides (26,27) or 5-methyl-
uridines (28) did not activate OAS. Here, we report that
unmodified in vitro transcribed RNA activated OAS1 to
generate 2-5A, but this was substantially reduced when
RNA contained �, m6A or s2U. Recently, the consensus
sequence nnWWnnnnnnnnnWGn (W=U or A) was
demonstrated to be important for OAS1 activation by
dsRNA, and this interaction was dependent on the
minor groove and free OH groups on the critical base
pairs (29). The requirement that three out of the four
critical base pairs in this sequence must be U:A highlights
the importance of uridine for OAS1 activation. However,
pseudouridine forms hydrogen bounds with adenosine in
the same manner that uridine does (Figure 7), and the
imino group of � is oriented toward the major groove
(30), so how � disrupts OAS1 activation remains unclear.
The presence of � stabilizes secondary structure and adds
rigidity to both ss and dsRNA [reviewed in (4)]. In this
capacity, � could affect OAS activation by altering the
equilibrium structure of the RNA, rather than directly
affecting OAS binding.

Activation of OAS leads to production of 2-5A, which
binds to the latent endoribonuclease RNase L, the effector
enzyme of the 2-5A pathway. Activated RNase L cleaves
various ssRNA including specific sites of rRNAs access-
ible in the intact ribosome, resulting in RNase L-specific
cleavage products visible by gel electrophoresis (18). In
WT MEF, unmodified RNA induced rRNA cleavage,
which was reduced if RNA contained �. However, none
of the RNAs caused rRNA cleavage in RNase L�/� cells,
confirming that the 2-5A system is required for
RNA-induced rRNA cleavage. High levels of 2-5A result
in global rRNA cleavage by RNase L (31), and when sus-
tained ultimately lead to apoptosis (32,33). In comparison,
the level of rRNA cleavage induced here by transfection of
in vitro transcribed RNA is relatively small, and may not
be expected to induce high levels of apoptosis. On the
other hand, this level of rRNA cleavage is sufficient to
have a profound impact on translation of the reporter
mRNA. We propose that unmodified RNA induces local
OAS and RNase L activation, as demonstrated with viral
RNAs and ssRNA covalently linked to dsRNA (34,35).
Accordingly, locally activated RNase L cleavage likely
reduces translation of unmodified mRNA through local

cleavage of rRNA without inducing global rRNA
cleavage and apoptosis.
The presence of � has been shown to enhance the sta-

bility of RNA secondary structures, but has not previously
been demonstrated to cause resistance to nucleases. RNA
containing � was cleaved efficiently by RNase A, RNase
H (36), RNase T1, RNase T2, nuclease P1 and snake
venom phosphodiesterase, although there is some indica-
tion that pancreatic diesterase and snake venom phospho-
diesterase may cleave �-RNA with reduced efficiency (37).
A previous report based on cleavage of a C11N2C7 oligo
RNA showed that RNA containing 20-deoxy-20-
a-fluorouridine was bound by RNase L but cleaved slowly,
whereas RNA containing 20-O-methyluridine was not
bound by RNase L (38). Here, we used a similar approach
and demonstrated that purified RNase L readily cleaved
the oligo ssRNA C11U2C7 but not when the cleavage
site contained �. We also extended those findings to the
examination of long in vitro transcribed RNA and showed
that unmodified RNA was cleaved by purified RNase L,
but cleavage of �-RNA proceeded more slowly. The
cleavage of �-RNA despite inactivity toward C11�2C7 is
not surprising considering the substrate specificity of
RNase L. RNase L cleaves preferentially after UpNp,
with highest activity following UU, UA and AU, but it
is also capable of cleaving RNA following dinucleotide
motives that avoid U (e.g. AA, AC and CA) (39–41).
We also examined the effect of �-modification on the

stability of in vitro transcribed RNA. In RRL and in cell

Figure 7. Structures and base pairing of uridine and pseudouridine. In
pseudouridine, uracil is linked to ribose via C5 instead of the N1
linkage found in uridine (C5 and N1 are indicated in bold type).
Hydrogen bonds between adenosine and uridine or pseudouridine are
indicated by dotted lines. Additional hydrogen bonding potential of
pseudouridine is indicated by dashed arrow.
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culture, �-RNA was degraded more slowly than unmodi-
fied RNA. Previous experiments also suggested that
�-RNA is retained longer following injection in mice
(9). Despite the rapid cleavage of unmodified RNA by
RNase L in vitro, the half-life of unmodified RNA did
not increase to the level of �-RNA in RNase L�/� cells.
This suggests that in addition to RNase L, other intracel-
lular nucleases also cleave unmodified RNA more effi-
ciently than �-containing RNA.
As seen in previous reports (6,9), in WT cells, there was

significantly higher translation of �-mRNA than unmodi-
fied mRNA. In contrast, in RNase L�/� MEF cells the
translational advantage of �-mRNA over the unmodified
mRNA was limited. Similarly, the translational advantage
of �-mRNA was reduced in RNase L�/� mice relative to
WT mice. Notably, however, the absolute translation level
of �-mRNA remained equal in WT and RNase L�/�

mice, while the translation of unmodified mRNA
increased in RNase L�/� mice. This indicates that
neither the presence of RNase L nor �-mRNA alone sig-
nificantly affects translation of �-mRNA, but rather that
unmodified RNA causes translational inhibition through
RNase L activation. Moreover, these results are consistent
with the in vitro activation of OAS1 by unmodified RNA
that we observed. Furthermore, �-mRNA continued to be
actively translated for a longer duration than unmodified
mRNA. In RNase L�/� cells and mice, the translational
advantage of �-mRNA is reduced, despite the observation
that the absence of RNase L in cells does not significantly
alter the stability of either U-RNA or �-mRNA.
Therefore, we propose that in cells the mechanism by
which the 2-5A system enhances translation of
�-mRNA is not primarily through reduced degradation
of the �-mRNA itself, but instead through decreased
rRNA cleavage resulting from diminished OAS activation.
Thus, OAS activation by unmodified mRNA results in
RNase L activation, which reduces translation due to
rRNA cleavage rather than through cleavage of the
activating transfected mRNA.
In addition to viral RNA, select cellular mRNAs from

prostate cancer cells have been shown to activate OAS
(13). Additionally, cleavage of cellular and viral RNAs
by RNase L produces short RNAs, which can activate
the cytoplasmic RNA sensor RIG-I, leading to interferon
production (42–44). The presence and effects of modified
nucleosides in these RNase L-generated short RNAs has
not been investigated. Because RNA containing modified
nucleosides activates OAS less and is less efficiently
cleaved by RNase L, if viral infection or cancer develop-
ment were to alter the level of nucleoside modification, it
could lead to modified RIG-I activation and ultimately
change immune responsiveness and disease progression.
Consistent with this possibility, some viral mRNAs are
hyper-methylated compared to mammalian mRNA
(45,46). Viral-encoded 20-O-methyltransferases extensively
modify the 50-ends of their capped mRNA. This modifi-
cation is critical for the virus to avoid interferon induction
and evade detection by the immune system. (47,48).
Additionally, a recent study of non-small-cell lung
cancer identified the upregulation of small nucleolar

RNAs (snoRNAs), which function in directing
pseudouridylation and 20-O-methylation of RNA (49).

Nucleases play a central role in host defense through
destruction of pathogenic nucleic acids. The 2-5A system
functions to detect and degrade danger-associated intra-
cellular RNAs. Activation of RNase L also leads to
reduced translation due to rRNA cleavage and when sus-
tained, results in apoptosis, further limiting replication of
the pathogens. Here, we identify that some unmodified
RNAs serve as a molecular pattern recognized by OAS
and RNase L. The 2-5A system activity is decreased
when RNA contains nucleoside modifications, which
reduce both OAS activation and cleavage by RNase L.
Other RNA sensors, including PKR, TLR3, TLR7,
TLR8 and RIG-I (5–8) also exhibit reduced activation
by RNA containing modified nucleosides. Therefore, this
work supports the proposal made by us and others that
RNA sensors recognize certain RNAs that contain un-
modified nucleosides as a danger-associated molecular
pattern, as part of the extensive system of innate host
defenses against pathogenic RNA, but that nucleoside
modification suppresses RNA immunogenicity.
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